Implementation of the sponge city: transformation and sustainable model solutions for roofs of the blue-green city

Hydrotox GmbH, Freiburg i.Br., Deutschland

Umwelt 🌍 **Bundesamt**

Introduction

Construction

Products

Hydrot dx

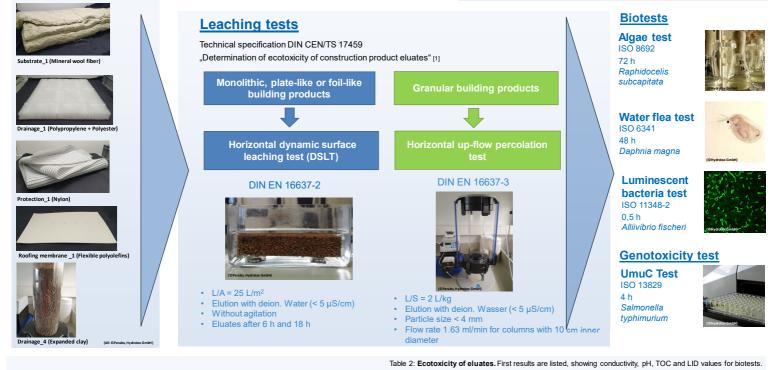
DR. BRILL INSTITUTES

lel.

The consequences of climate change pose enormous challenges for urban areas. In addition to prolonged heat waves, climate change significantly affects water availability: both heavy rainfall events with flooding and droughts cause considerable damage to buildings, infrastructure, and ecosystems. The sponge city concept offers various advantages in addressing these challenges: besides retaining rainwater, preventing flooding, and relieving wastewater systems, it reduces urban heat island effects through evaporative cooling and mitigates drought. A key component of this concept is the implementation of green roofs. Currently, building materials are used that, due to the leaching of potentially toxic substances in contact with rainwater, may negatively impact the retained water. This water eventually reaches surface or groundwater and can enter drinking water supplies, potentially causing eco- and human-toxic effects. In this research project, building materials used for green roofs will be subjected to leaching tests, and the eluates will be examined using a standardized biotest battery to assess potential negative impacts on the aquatic environment. Furthermore, a scaled-down model roof will be constructed using building materials that have been evaluated as non-(eco)toxic, and the resulting runoff will be analyzed for ecotoxicological effects. In comparison, runoff from existing green roofs will also be examined. The goal is to identify building materials that can be used for roof greening within the sponge city concept without posing ecotoxicological risks.

Hydrotox is leading WP 5 and is conducting exemplary testing of 20 selected construction products for their ecotoxicological potential and assessment of retained water from the model green roofs.

Methods



Substrate Storage lay Filter lave Root layer Roof

on of a model green roo

Test roofs as part of the project

Results

est dilution level without effects exceeding the test-specific variability is reported as test result (lowest ineffective dilution (LID).

Table 1: Results to be expected from the test battery

	Test standard	Endpoint	Evaluation
Luminescent bacteria (Vibrio fischeri)	EN ISO 11348	Light emission	EC50 (30 min) and LID
Algae (Pseudokirchneriella subcapicata or Desmodesmus subspicatus)	EN ISO 8692	Growth	EC50 (72 h) and LID
Crustaceans (Daphnia magna)	EN ISO 6341	Mobility	EC50 (48 h) and LID
umu-Test with Salmonella typhimurium TA 1535/pSK1002	ISO 13829	Gene induction	Induction rate (24 h)

[1] DIN CEN/TS 17459:2023-02 "Construction products: Assessment of rel lease of dange substances- Determination of ecotoxicity of construction product eluates"; German Version CEN/TS 17459:2022 https://dx.doi.org/10.31030/3096453

Project partners:	
Institute for Ecological Economy Research (IÖW) GmbH, Berlin	i ö v
Prof. Dr. Manfred Köhler, Neubrandenburg	1 0 1
Goetz & Heintze Garten- und Landschaftsbau GmbH, Stahnsdorf	INSTITUT FÜF
Technologiezentrum Wasser (TZW), Karlsruhe	WIRTSCHAFT
We would like to thank the Federal Environment Agency for funding the	ne project (FKZ 3723
duration 06/2023 to 06/2026)	

Drainage_1 Polypropylene Polyester) (Pc DSLT 2.4 6.7 0.35 ≤2 ≤2 Substrate_1 (Mine DSLT 17,2 8,3 1,64 ≤2 ≤2 wool fiber) DB_1 (Flexibl polyolefins) 16.3 0.67 DSIT 7.5 > 24 <2 Drainage_4 (AlZnFe DSLT 9.8 6.8 1.36 >6 Discussion Blank 1 DSLT 1.4 7.0 0.19 ≤2

4,7

6,4

6,7

6,5

4,27

5,52

≤2

≤2

-Ecotoxic effects in some construction products detected (DB_1 and Drainage_4) \rightarrow Assessment of ecotoxic effects of construction products detected (DB_1 and Drainage_4) \rightarrow Assessment of ecotoxic effects of construction products detected (DB_1 and Drainage_4) \rightarrow Assessment of ecotoxic effects of construction products detected (DB_1 and Drainage_4) \rightarrow Assessment of ecotoxic effects of construction products detected (DB_1 and Drainage_4) \rightarrow Assessment of ecotoxic effects of construction products detected (DB_1 and Drainage_4) \rightarrow Assessment of ecotoxic effects of construction products detected (DB_1 and Drainage_4) \rightarrow Assessment of ecotoxic effects of construction products detected (DB_1 and Drainage_4) \rightarrow Assessment of ecotoxic effects of construction products detected (DB_1 and Drainage_4) \rightarrow Assessment of ecotoxic effects of construction products detected (DB_1 and Drainage_4) \rightarrow Assessment of ecotoxic effects of construction products detected (DB_1 and Drainage_4) \rightarrow Assessment of ecotoxic effects of construction products detected (DB_1 and Drainage_4) \rightarrow Assessment of ecotoxic effects of construction products detected (DB_1 and Drainage_4) \rightarrow Assessment of ecotoxic effects of construction products detected (DB_1 and Drainage_4) \rightarrow Assessment of ecotoxic effects detected (DB_1 and Drainage_4) \rightarrow Assessment of ecotoxic effects detected (DB_1 and Drainage_4) \rightarrow Assessment of ecotoxic effects detected (DB_1 and Drainage_4) \rightarrow Assessment of ecotoxic effects detected (DB_1 and Drainage_4) \rightarrow Assessment of ecotoxic effects detected (DB_1 and Drainage_4) \rightarrow Assessment of ecotoxic effects detected (DB_1 and Drainage_4) \rightarrow Assessment of ecotoxic effects detected (DB_1 and Drainage_4) \rightarrow Assessment detected (DB_1 and Drainage_4) nstalled in green roofs is reasonable and necessary

-No genotoxicity detected
A very positive result, indicating low health and environmental risks

Filter_1

otection_1 (Nylo

(Polyp

DSLT

DSLT

48 501 0

Contact: Elena Perabo, Dr. Christoph Hafner, Phone: +49 761-45512-0. E-Mail: perabo@hydrotox.de

≤2

≤2

≤2

≤2

≤2

≤2

≤1,5

≤1,5

≤1.5

≤1,5

<15

≤1.5

